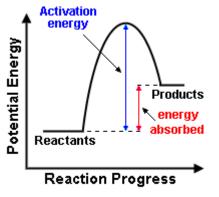
C4 Knowledge Organiser – 5.4.1-3 – Chemical Changes

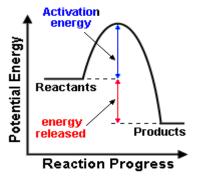

solvent

styrofoam

coffee cups

Endothermic reactions $\underline{1}$

- Takes in energy from the surroundings
- Temperature of the surroundings decreases
- Examples:
- Thermal decomposition
- Citric acid + Sodium hydrogencarbonate
- Sports injury packs



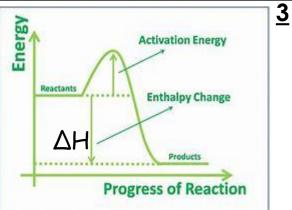
Endothermic

reaction

Exothermic reactions $\underline{2}$

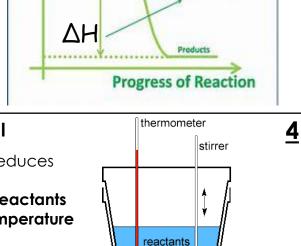
- Transfers energy to the surroundings
- Temperature of the surroundings increases
- Examples:
- Combustion
- Oxidation reactions
- Neutralisation reactions
 - Hand warmers

Exothermic reaction


Reaction profiles

Activation energy –
The minimum
amount of energy
that particles require
to react

ΔH – Overall energy


change + Δ **H** = **Endothermic**

- $\triangle H$ = Exothermic

Required practical

- Styrofoam cup reduces energy transfer
- Independent Reactants
- Dependent Temperature change
- Improvements add a lid to reduce energy loss
- Add a stirrer to ensure reactants fully mixed

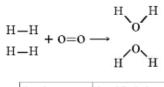
products

Bond enthalpy calculations (HT only) Example: Calculate the enthalpy change when water is

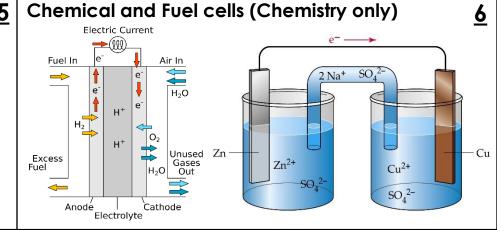
Example: Calculate the enthalpy change who formed from H_2 and O_2 .

STEP 1 Bonds Broken 2 x (H-H) = 2 x 436 = 872

1 x (O=O) = 498


Total = 872 + 498 = 1370

STEP 2 Bonds Made


4 x (O-H) = 4 x 464 = 1856

STEP 3

Enthalpy change = bonds broken – bonds made = 1370 – 1856 = -486

Bond	Bond Enthalpy
Н-Н	436
H-O	464
0=0	498

