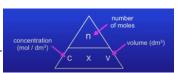
C3 Knowledge Organiser – Quantitative Chemistry COMBINED

3

 Conservation of Mass No atoms are lost or made during a chemical reaction: Mass of the produc equals the mass of the reactants. 	ts 1 Relative Formu The sum of the relation masses of the atom numbers shown in the second	itive atomic $2Mg + O2 \rightarrow 2MgO$ ns in the $48g + 32g = 80g$	Uncertainty Whenever a measurement is taken, there is always some uncertainty about the result obtained.
 Mass changes when a reactant or product gas: Mass appears to increase during a reaction One of the reactants is a gas Magnesium + oxygen → magnesium of the products is a gas and has escaped Calcium carbonate → carbon dioxide + calconate + + ca	Represent chemics and have the same of atoms of each e	al reactions Subscript - Normal script e number Subscript numbers show the number of atoms of the element to its left.	1.Calculate the mean 2.Calculate the range of the results 3.Estimate of uncertainty in mean would be half the range. Does the mean value fall within the range of uncertainty of the result?
 Moles HT Chemical amounts are measured in mole Mass of one mole of a substance in gram. e.g. One mole of H₂O = 18g (1 + 1 + 16), O <u>Avogadro's Constant: 6.02 x 10²³</u> 'One mole of any substance will cont particles, atoms, molecu 6.02 x 10²³ per mole: One mole of H₂O will contain 6.02 x 10²³ m One mole of NaCl will contain 6.02 x 10²³ m One mole of NaCl will contain 6.02 x 10²³ 	tain the same number of ules or ions.'	Amounts of substances <u>5</u> in equations HT Chemical reactions show the number of moles reacting and the number of moles made. e.g. Mg + 2HCl → MgCl ₂ + H ₂ One mole of magnesium reacts with two moles of hydrochloric acid to make one mole of magnesium chloride and one mole of hydrogen	Calculating amounts of substances in equations HT If you have a 60g of Mg, what mass of HCl do you need to convert it to MgCl ₂ ? A, : Mg =24 so mass of 1 mole of Mg = 24g Mr, : HCl (1 + 35.5) so mass of 1 mole of HCl = 36.5g So 60g of Mg is 60/24 = 2.5 moles Balanced symbol equation tells us that for every one mole of Mg, you need two moles of HCl to react with it. So you need 2.5x2 = 5 moles of HCl You will need 5 x 36.5g of HCl= 182.5g
In a reaction with 2 reactants, it is common to use an excess of one reactant to make sure that all of the other reactant is used up. This reactant that is completely used up is called the limiting reactant , as it limits the amount of the products that can be made. You can calculate the moles or	centration HT <u>8</u> oncentration of a n (aq) can be measured m ³ (mass/volume) entration = mass ÷ volume oncentration of the n depends on the mass solute and the volume of vent. Increasing mass ses concentration, sing volume decreases ntration.	Using Moles to balance Remember: moles = mass \div M - If you calculate the number of re- product in a reaction it will give yop products, so you can write the back e.g 48g of Mg reacts with 32g MgO so: 48 \div 24 = 2mol of Mg; 32 \div (2x 2mol of MgO this is a ratio of 2:1:2 (Mg: O ₂ : N 2Mg + O ₂ > 2M	moles of each reactant and you the ratio of reactants and alanced equation . of O_2 to produce 80g of (16)= 1mol of O₂ ; 80÷(24+16)= MgO):

C3 Knowledge Organiser – Quantitative Chemistry CHEM ONLY


Atom Economy <u>1</u>	Percentage Yield % Yield = Mass of product made x 100 Max. theoretical mass 2
A measure of the amount of starting materials that end up as useful product.	Percentage yield is comparing the amount of product obtained as a percentage of the maximum theoretical amount.
Atom economy = <u>Relative formula mass of desired product from equation</u> x 100 Sum of relative formula mass of all reactants from equation	It is not always possible to obtain the calculated amount of a product because: -The reaction may not go to completion because it is reversible.
High atom economy is important for sustainable development and economic reasons.	-Some of the product may be lost when it is separated from the reaction mixture.
Calculate the atom economy for making hydrogen by reacting zinc with hydrochloric acid: $Zn + 2HCI \rightarrow ZnCI2 + H2$	-Some of the reactants may react in ways different to the expected reaction. HT ONLY:
$\begin{array}{llllllllllllllllllllllllllllllllllll$	200g of calcium carbonate is heated. It decomposes to make calcium oxide and carbon dioxide. Calculate the theoretical mass of calcium oxide made: $CaCO_3 \rightarrow CaO + CO_2$
$=2/138 \times 100 = 1.45\%$ This method is unlikely to be chosen as it has a low atom economy.	M_r of $CaCO_3 = 40 + 12 + (16x3) = 100$ M_r of $CaO = 40 + 16 = 56$ 100g of $CaCO_3$ would make 56 g of CaO So 200g would make 112g

Using Concentration of solutions HT

Concentration of a solution is the amount of solute per volume of solution. Concentration =

Concentration = <u>amount (mol)</u> (mol/dm³) volume (dm³)

If the volumes of two solutions that react completely are known and the concentrations of one solution is known, the concentration of the other solution can be calculated. E.g.

A solution of sodium nitrate has a concentration of 0.8 mol/dm³. Calculate the mass of sodium nitrate in 0.5dm³. Mr NaNO₃ = 85.

 Calculate the moles using the equation: number of moles = concentration (mol/dm³) x volume (dm³).
 Calculate mass using the equation:

mass (g) = number of moles $x M_r$

1) Number of moles = $0.8 \times 0.5 = 0.4$ moles

2) Mass = 0.4 x 85 = **<u>34g of sodium nitrate in the solution</u>**

$\frac{3}{2} \quad Use of amount of substance in relation <math>\frac{4}{2}$ to volumes of gases HT

2

Equal amounts of moles or gases occupy the same volume under the same conditions of temperature and pressure. **Molar volume of gas:**

'The volume of one mole of any gas at room temperature and pressure (20°C and 1 atmospheric pressure) is 24 dm^{3'}

> No. of moles of gas = vol of gas (dm³) 24dm³

r I		
	What is the volume of 11.6 g of butane (C_4H_{10}) gas at RTP?	6g of a hydrocarbon gas had a volume of 4.8 dm ³ . Calculate its molecular mass.
).	M _r : (4 x 12) + (10 x 1) = 58	1 mole = 24 dm ³ , so 4.8/24 = 0.2 mol
	11.6/58 = 0.20 mol	M _r = 6 / 0.2 = 30
-	Volume = 0.20 x 24 = 4.8 dm ³	lf 6g = 0.2 mol, 1 mol equals 30 g