Cardinal Newman Catholic School Holy Cross Catholic Multi Academy Company

YEAR 11 CHEMISTRY PAPER 1

Summer 2024 Separate Science practice question booklet FOUNDATION TIER ONLY

Name:

"Knowledge through the light of faith"

For each Topic in Paper 1 there are 4/5 practice questions.

Remember they can ask you questions linked to all five topics.

How to use this booklet:

- 1. Complete revision for each topic
- 2. Put away your notes/resources and try to answer the questions in the best way possible.
- Look at the mark scheme at the back of the booklet and compare it to your answer – add anything you have missed off in green pen.
- 4. Go back to the revision guide/your resources to go over anything you are unsure of.

Contents

C1 Atomic Structure	pg 3-10
C2 Bonding, structure and the properties of matter	pg 11-20
C3 Quantitive Chemistry	pg 21-25
C4 Chemical changes	pg 26-36
C5 Energy changes	pg 37-47
Mark scheme	pg 48-62

C1 Atomic Structure and the Periodic table

Q1. This question is about the structure of the atom.

(a) Complete the sentences.

Choose answers from the box.

Each word may be used once, more than once, or not at all.

electron		ion		neutron
	nucleus		proton	

The centre of the atom is the ______.

The two types of particle in the centre of the atom are the proton

and the _____.

James Chadwick proved the existence of the ______.

Niels Bohr suggested particles orbit the centre of the atom. This type of particle

is the ______.

The two types of particle with the same mass are the neutron

and the _____.

The table below shows information about two isotopes of element X.

	Mass number	Percentage (%) abundance
Isotope 1	63	70
Isotope 2	65	30

(b) Calculate the relative atomic mass (A_r) of element **X** using the equation:

 $A = \frac{(\text{mass number} \times \text{percentage}) \text{ of isotope 1} + (\text{mass number} \times \text{percentage}) \text{ of isotope 2}}{(\text{mass number} \times \text{percentage}) \text{ of isotope 2}}$

100

 $A_r =$

(5)

(2)

Use the table above.

Give your answer to 1 decimal place.

(c) Suggest the identity of element **X**.

	Use the periodic table.
	Element X is
(d)	The radius of an atom of element X is 1.2×10^{-10} m
	The radius of the centre of the atom is $\frac{1}{10000}$ the radius of the atom
	Calculate the radius of the centre of an atom of element X .
	Give your answer in standard form.
	() (Total 10 marks)

Q2. This question is about atomic structure.

Figure 1 represents an atom of element Z.

(a) Name the parts of the atom labelled **A** and **B**.

Choose answers from the box.

Г

	electron	neutron	nucleus	proton	
1	Α				
I	В				

(2)

(b) Which particle has the lowest mass?

Choose the answer from the box.

							
	electron	neutron	nucleus	proton			
						(1)	
(c)	Which group of t	the periodic table	e contains ele	ment Z ?			
	Use Figure 1.						
	Group						
(d)	Give the stomic	number and the	mass numbe	r of element 7			
(u)			mass numbe				
	Choose answer	s from the box.					
						7	
	1	5	6	11	16		
	Atomia numbor					_	
Bron	nine has two diffe	rent types of ato	m.				
The	atoms have a diff	erent number of	neutrons but	the same num	per of proto	ns.	
(e)	What is the nam	e for this type of	atom?				
	Tick (√) one bo	х.					
	Compound						
	lon						

Isotope

Molecule

(f) The different types of bromine atom can be represented as ${}^{79}_{35}Br$ and ${}^{81}_{35}Br$ The relative atomic mass (A_r) of bromine is 80 Which statement is true about the number of each type of atom in bromine? Tick (\checkmark) **one** box.

There are fewer ${}^{79}_{35}Br$ atoms than ${}^{81}_{35}Br$ atoms. There are more ${}^{79}_{35}Br$ atoms than ${}^{81}_{35}Br$ atoms. There are the same number of ${}^{79}_{35}Br$ atoms and ${}^{81}_{35}Br$

atoms.

- **Q3.** This question is about models of the atom.
 - (a) Atoms were first thought to be tiny spheres that could not be divided.

Which particle was discovered to change this model of the atom?

Tick (\checkmark) one box.

Electron	
Neutron	
Proton	

(Total 8 marks)

(1)

(1)

(1)

(b) The diagram below shows another model of the atom.

What is the name of this model of the atom?

(c) A scientist fired particles at gold atoms.

Some of these particles were scattered.

The results led to a different model of the atom.

Which type of particle was fired at the gold atoms?

Tick (\checkmark) one box.

Alpha	
Electron	
Neutron	
Proton	

(d) Which scientist first suggested that electrons orbit the nucleus at specific distances?

Tick (\checkmark) one box.

Bohr	
Chadwick	
Mendeleev	

- (e) The model of the atom used today has three subatomic particles:
 - electrons
 - neutrons
 - protons.

Complete the sentences.

Atoms of the same element have the same atomic number because they have the

same number of _____.

Atoms of the same element can have different mass numbers because they have

different numbers of _____.

Atoms have no overall charge because they have the same number of

_____ and _____.

(1)

Q4. This question is about Group 1 elements.

(a) Complete **Table 1** to show the electronic structure of a potassium atom.

Table 1			
Atom	Number of electrons	Electronic structure	
Sodium	11	2,8,1	
Potassium	19		

(b) Why do Group 1 elements have similar chemical properties?

Tick (\checkmark) one box.

They have the same number of electron shells.

shell electrons.

They have two electrons in the first shell.

3—	
а— С	_
3	
3	

(1)

(1)

Table 2 shows observations made when lithium, potassium and rubidium react with water.Table 2

Element	Observations
Lithium	Bubbles slowly Floats Moves slowly
Sodium	1 2
Potassium	Bubbles very quickly Melts into a ball Floats Moves very quickly Flame
Rubidium	Sinks Melts into a ball Explodes with a flame

(c) Give **two** observations you could make when sodium reacts with water.

Write your answers in Table 2.

(2)

How does the reactivity of the	e elements change going down Group 1?	
		(1)
Give two ways in which the going down Group 1.	observations in Table 2 show the change in reactivity	
1		
2		
		(2
Which gas is produced wher	Group 1 elements react with water?	
Tick (√) one box.		
Carbon dioxide		
Hydrogen		
Nitrogen		
Oxygen		

Q5. The halogens are elements in Group 7.

(a) Bromine is in Group 7.

Give the number of electrons in the outer shell of a bromine atom.

(b) What is the formula for fluorine gas?

Tick **one** box.

(1)

(Total 8 marks)

A student mixes solutions of halogens with solutions of their salts.

The table below shows the student's observations.

	Potassium	Potassium	Potassium
	chloride	bromide	iodide
	(colourless)	(colourless)	(colourless)
Chlorine		Solution turns	Solution turns
(colourless)		orange	brown
Bromine (orange)	No change		Solution turns brown
lodine (brown)	No change	No change	

(d) Explain how the reactivity of the halogens changes going down Group 7.

Use the results in the table above.

(3) (Total 5 marks)

C2 Bonding, structure and the properties of matter

Q1. This question is about different substances and their structures.

(a) Draw **one** line from each statement to the diagram which shows the structure.

(b) **Figure 1** shows the structure of an element. **Figure 1**

What is the name of this element?

Tick **one** box.

Carbon

Chloride

Nitrogen

Xenon

(4)

 \cong

(c) Why does this element conduct electricity?

Tick **one** box.

It has delocalised electrons

It contains hexagonal rings

It has weak forces between the layers

It has ionic bonds

(d) Figure 2 shows the structure of an alloy.Figure 2

Explain why this alloy is harder than the pure metal Y.

(e) What percentage of the atoms in the alloys are atoms of **X**?

(f) What type of substance is an alloy?

Tick **one** box. Compound Element Mixture

> (1) (Total 11 marks)

_(2)

(2)

Q2. This question is about compounds of oxygen and hydrogen.

Figure 1 represents the structure of hydrogen peroxide.

Figure 1

(a) What is the correct formula of hydrogen peroxide?

Tick (\checkmark) one box.

(b) Which type of bonding is shown in **Figure 1**?

Tick (\checkmark) one box.

Covalent	
Ionic	
Metallic	

(c) Hydrogen peroxide decomposes in the presence of a catalyst.

Which elements are often used as catalysts?

Tick (\checkmark) one box.

Alkali metals	
Halogens	
Transition metals	

(1)

(d) Hydrogen and oxygen form water.

A hydrogen atom contains one electron.

An oxygen atom contains six electrons in the outer shell.

Complete **Figure 3** to show a dot and cross diagram for a water molecule.

Show the outer electrons only.

(2) (Total 5 marks)

(1)

Q3. This question is about elements, compounds and mixtures.

Figure 1 shows five different substances, A, B, C, D and E.

O and ● represent atoms of different elements.

Figure 1

Tick (\checkmark) one box.

(b) Which substance is a mixture of elements?

Tick (\checkmark) one box.

(c) Which substance is a mixture of an element and a compound?

Tick (\checkmark) one box.

Substances are separated from a mixture using different methods.

Draw one line from each method of separation to the substance and mixture it would (d) separate.

Method of separation Substance and mixture blue food colour from a mixture of food colours chromatography copper from an alloy of copper and zinc copper sulfate from copper sulfate solution crystallisation ethanol from a mixture of ethanol and water

(2)

(1)

Sand does not dissolve in water. A student separates a mixture of sand and water (e) by filtration.

Draw a diagram of the apparatus the student could use.

You should label:

- where the sand is collected
- where the water is collected.

Diagram

(3)

(f) A student distils a sample of salt solution to produce pure water.

Figure 2 shows the apparatus.

What temperature would you expect the thermometer to show?

Tick (\checkmark) **one** box.

(1) (Total 9 marks) **Q4.** Figure 1 shows the outer electrons in an atom of the Group 1 element potassium and in an atom of the Group 6 element sulfur.

(a) Potassium forms an ionic compound with sulfur.

Describe what happens when two atoms of potassium react with one atom of sulfur.

Give your answer in terms of electron transfer.

Give the formulae of the ions formed.

- (5)
- (b) The structure of potassium sulfide can be represented using the ball and stick model in **Figure 2**.

The ball and stick model is **not** a true representation of the structure of potassium sulfide.

Give **one** reason why.

(c) Sulfur can also form covalent bonds.

Complete the dot and cross diagram to show the covalent bonding in a molecule of hydrogen sulfide.

Show the outer shell electrons only.

(d) Calculate the relative formula mass (M_r) of aluminium sulfate Al₂(SO₄)₃

Relative atomic masses (A_r): oxygen = 16; aluminium = 27; sulfur = 32

Relative formula mass = _____

(2)

(e) Covalent compounds such as hydrogen sulfide have low melting points and do **not** conduct electricity when molten.

Draw **one** line from each property to the explanation of the property.

(2)

(f) Ionic compounds such as potassium sulfide have high boiling points and conduct electricity when dissolved in water.

Draw **one** line from each property to the explanation of the property.

(2) (Total 14 marks)

C3 Quantitive Chemistry

Q1. This question is about the extraction of metals.

Element **R** is extracted from its oxide by reduction with hydrogen.

The equation for the reaction is:

$$3 H_2 + \mathbf{R}O_3 \rightarrow \mathbf{R} + 3 H_2O$$

(a) The sum of the relative formula masses (M_r) of the reactants (3 H₂ + **R**O₃) is 150

Calculate the relative atomic mass (A_r) of **R**.

Relative atomic masses (A_r): H = 1 O = 16

Relative atomic mass (A_r) of **R** = _____

(b) Identify element **R**.

You should use:

- your answer to part (a)
- the periodic table.

Identity of R = _____

(c) Carbon is used to extract tin (Sn) from tin oxide (SnO₂).

The equation for the reaction is:

$$SnO_2 + C \rightarrow Sn + CO_2$$

Calculate the percentage atom economy for extracting tin in this reaction.

Relative atomic masses (A_r): C = 12 O = 16 Sn = 119

(3) (Total 6 marks)

(2)

- **Q2.** This question is about acids, bases and salts.
 - (a) The student used a pipette to measure 25.0 cm³ of hydrochloric acid.

Figure 2 shows a pipette.

(1) (Total 3 marks)

- **Q3.** This question is about silver iodide.
 - (a) Calculate the percentage atom economy for the production of silver iodide in this reaction.

The equation for the reaction is:

$$AgNO_3(aq) + NaI(aq) \rightarrow AgI(s) + NaNO_3(aq)$$

Give your answer to 3 significant figures.

Relative formula masses:

 (M_r) : AgNO₃ = 170 Nal = 150 Agl = 235 NaNO₃ = 85

Percentage atom economy (3 significant figures) = _____ %

(b) Tungsten is a metal. The symbol of tungsten is W Tungsten is produced from tungsten oxide by reaction with hydrogen.

The equation for the reaction is:

 $WO_3 \hspace{.1in} + \hspace{.1in} 3 \hspace{.1in} H_2 \hspace{.1in} \rightarrow W \hspace{.1in} + \hspace{.1in} 3 \hspace{.1in} H_2O$

Calculate the percentage atom economy when tungsten is produced in this reaction. Use the equation:

percentage atom economy = $\frac{184}{(M_r \text{ WO}_3) + (3 \times M_r \text{ H}_2)} \times 100$

Relative formula masses (M_r): WO₃ = 232 H₂ = 2

Percentage atom economy = _____%

(4)

Aluminium is extracted from aluminium oxide.

Mas	ss of aluminium	oxide =	k(
The formula of aluminium oxide is	s Al ₂ O ₃		
Calculate the relative formula ma	ass (<i>M</i> r) of alumi	nium oxide.	
Relative atomic masses (A _r):	O = 16	AI = 27	
Relative fo	ormula mass (<i>M</i> ,) =	
60.0 kg of aluminium oxide produ	ices a maximum	n of 31.8 kg of alumini	um.
In an extraction process only 28. aluminium oxide.	4 kg of aluminiu	m is produced from 60).0 kg of
Calculate the percentage yield.			
Give your answer to 3 significant	figures.		
Use the equation:			
percentage yield = $\frac{max}{maxin}$	ass of product a num theoretical i	ctually made mass of product × 100	

Q5.

This question is about elements in Group 1.

A teacher burns sodium in oxygen.

(a) Complete the word equation for the reaction.

sodium + oxygen \rightarrow _____

(b) What is the name of this type of reaction?

Tick **one** box.

Decomposition	
Electrolysis	
Oxidation	
Precipitation	

(c) The teacher dissolves the product of the reaction in water and adds universal indicator.

The universal indicator turns purple.

What is the pH value of the solution?

Tick **one** box.

(d) A solution of NaOH had a concentration of 40 g/dm³

What mass of NaOH would there be in 250 cm³ of the solution?

Mass = _____ g (2) (Total 5 marks)

(1)

(1)

C4 Chemical changes

Q1. A student investigated the electrolysis of sodium chloride solution. **Figure 1** shows the apparatus.

Figure 1

The student measured the volume of gas collected in each measuring cylinder every minute for 20 minutes.

(a) **Figure 2** shows the volume of hydrogen gas collected in the measuring cylinder after 8 minutes.

Figure 2

What is the volume of hydrogen gas collected?

Figure 3 shows the results of the investigation.

(b) Which of the lines on **Figure 3** show that the volume of gas collected is directly proportional to the time?

Tick one box.

Both lines	
Chlorine line only	
Hydrogen line only	
Neither line	

(1)

(c) Which of the lines on **Figure 3** show a positive correlation between the volume of gas collected and time?

Tick **one** box.

Both lines	
Chlorine line only	
Hydrogen line only	
Neither line	

A teacher demonstrates the electrolysis of different substances using graphite electrodes.

- molten zinc chloride
- potassium bromide solution.

Complete the table below to predict the products.

Choose answers from the box.

chlorine bromi	ne hydrogen	oxygen	potassium	zinc
Substance electrolysed	Product at cat (negative elect	hode Pro rode) (pos	oduct at anode sitive electrode)	
Molten zinc chloride				
Potassium bromide solution				

Q2. Soluble salts are formed by reacting metal oxides with acids.

- (a) Give **one** other type of substance that can react with an acid to form a soluble salt.
- (b) Calcium nitrate contains the ions Ca²⁺ and NO₃⁻

Give the formula of calcium nitrate.

(c) Describe a method to make pure, dry crystals of magnesium sulfate from a metal oxide and a dilute acid.

____(6) (Total 8 marks)

(1)

- **Q3.** This question is about acids and alkalis.
 - (a) Which ion do acids produce in aqueous solution?

Tick (\checkmark) one box.

	H+ OH- O ² -	
(b)	Acids react with alkalis.	(1)
()	What is the name of this type of reaction?	
	Tick (✓) one box.	
	Decomposition	
	Electrolysis	
	Neutralisation	
	Redox	
		(1)

(c) Balance the equation for the reaction between sulfuric acid and potassium hydroxide.

$$H_2SO_4 + \underline{\qquad} KOH \rightarrow K_2SO_4 + \underline{\qquad} H_2O$$
(1)

(d) Universal indicator turns purple in potassium hydroxide solution.

What is the pH of the solution?

Tick (\checkmark) one box.

A student does a titration to find the volume of sulfuric acid that reacts with 25 cm³ of potassium hydroxide solution.

The figure below shows the equipment used.

(e) The 25 cm³ of potassium hydroxide solution is measured with the measuring cylinder.

Which piece of equipment could the student use to measure the 25 cm³ of potassium hydroxide solution more accurately?

Tick (\checkmark) one box.

Beaker	
Evaporating basin	
Pipette	
Test tube	

(f) Describe how the student would use the equipment in the figure above to complete the titration.

Q4. This question is about metal carbonates.

A student investigated the reaction of copper carbonate with an acid.

Figure 1 shows the apparatus.

This is the method used.

- 1. Pour 25 cm³ of the acid into a conical flask.
- 2. Weigh 0.10 g of copper carbonate.
- 3. Remove the stopper and add the copper carbonate to the flask.
- 4. Quickly replace the stopper.
- 5. Record the maximum volume of gas collected in the gas syringe.
- 6. Repeat steps 1 to 5 with different masses of copper carbonate.
- (a) **Figure 2** shows the gas syringe during the experiment.

Figure 2

What is the reading on the gas syringe?

_____ CM³

(b) The student plotted the results on a graph.

Figure 3 shows the student's graph.

Page 33 of 62

(c) Copper chloride was produced in the reaction.
 Which acid reacts with copper carbonate to produce copper chloride?

Tick (\checkmark) one box.

(d) The reaction between copper carbonate and the acid produced a gas.

What was the gas?

Tick (\checkmark) one box.

Carbon dioxide	
Chlorine	
Hydrogen	
Oxygen	

A different student produced a pure, dry sample of copper chloride using the same reaction.

This is the method used.

- 1. Add excess copper carbonate to the acid.
- 2. Filter the mixture.
- 3. Heat the solution gently until crystals start to form.
- 4. Leave for 24 hours.
- 5. Remove the crystals.
- 6. Rinse with water and dry the crystals.
- (e) Why was the solution heated gently in step 3?

Tick (\checkmark) one box.

To evaporate acid

To evaporate copper carbonate

2- 2-	3 2
2	8
9— 9—	3 2

(f) How should the solution be heated gently in step 3?

(1) (Total 9 marks)

Q5. This question is about electrolysis.

Some students investigated the electrolysis of silver nitrate solution.

This electrolysis produces silver at the negative electrode.

Figure 1 shows the apparatus.

Figure 1

This is the method used.

- 1. Weigh the negative electrode.
- 2. Set up the apparatus shown in **Figure 1**.
- 3. Switch on the power supply.
- 4. Switch off the power supply after five minutes.
- 5. Rinse the negative electrode with water and allow to dry.
- 6. Reweigh the negative electrode.
- 7. Repeat steps 1 to 6 for different times.
- (a) Some silver did not stick to the negative electrode but fell to the bottom of the beaker.

The students needed to weigh this silver.

How could the students separate the silver from the silver nitrate solution?

Tick (\checkmark) one box.

By chromatography	
By crystallisation	
By distillation	3
By filtration	

(b) A student investigated the electrolysis of two aqueous salt solutions.

Hydrogen is produced at the negative electrode when the metal in the salt solution is more reactive than hydrogen.

Complete Table 2 to show what the student would observe at the negative electrode for each salt solution.

Salt solution	Observation at negative electrode
Copper sulfate	
Sodium chloride	

Table 2

- A teacher demonstrates the electrolysis of molten lead bromide. (c)

The products at the electrodes are lead and bromine.

Why should the teacher do the demonstration in a fume cupboard?

(1)

(2)

(d) Two other molten compounds are electrolysed.

Complete Table 3 to show the molten compounds and the products.

Tabl	e 3
------	-----

Molten compound electrolysed	Product at the negative electrode	Product at the positive electrode
Zinc chloride		
	Potassium	lodine

C5 Energy changes

Q1. This question is about chemical reactions and energy.

Hydrogen reacts with oxygen to produce water.

This reaction releases energy.

(a) Complete the word equation for the reaction.

hydrogen + oxygen
$$\rightarrow$$

(1)

(4)

(b) The graph below shows a reaction profile for the reaction between hydrogen and oxygen.

What do the labels **W**, **X**, **Y** and **Z** represent?

Choose answers from the box.

activati	on energy	energy	overall energy change
pro	ducts	progress of reaction	reactants
l			

(c) The reaction between hydrogen and oxygen is used in a hydrogen fuel cell.

What is the reason for using this reaction in a fuel cell?

Tick (\checkmark) one box.

To produce a change of state
To produce a potential difference
To produce a temperature change

(d) A student investigated the voltage produced by a chemical cell.

The student used different metals as the electrodes in the cell.

The metals used were:

- copper
- iron
- magnesium.

Which **two** metal electrodes would produce the greatest voltage when used in the chemical cell?

Give **one** reason for your answer.

Metals	and

		(2)
(Total	8	marks)

Q2. A student investigated the reactivity of metals with hydrochloric acid.

This is the method used.

- 1. Measure 50 cm³ of hydrochloric acid into a polystyrene cup.
- 2. Measure the temperature of the hydrochloric acid.
- 3. Add one spatula of metal powder to the hydrochloric acid and stir.

Reason _____

- 4. Measure the highest temperature the mixture reaches.
- 5. Calculate the temperature increase for the reaction.
- 6. Repeat steps 1 to 5 three more times.
- 7. Repeat steps 1 to 6 with different metals.

The table below shows the student's results.

	Temperature increase in °C				Mean		
Metal	Trial 1	Trial 2	Trial 3	Trial 4	4 increase in °C		
Cobalt	6	7	5	9	7		
Magnesium	54	50	37	55	Х		
Zinc	18	16	18	20	18		

(a) Calculate the mean temperature increase **X** for magnesium in the table above.

Do **not** include the anomalous result in your calculation.

X = _____°C (2) (b) Determine the order of reactivity for the metals cobalt, magnesium and zinc. Use the table above. Most reactive _____ Least reactive _____ (1) (C)

(c) The range of measurements either side of the mean shows the uncertainty in the mean temperature increase.

Complete the sentence.

Use the table above.

The mean temperature increase for zinc is 18 ± _____°C

(d) What type of variable is the volume of hydrochloric acid in this investigation?

Tick (✓) one box.		
Control		
Dependent		
Independent		

(e) Suggest **one** way of improving **step 3** in the method to give results which are more repeatable.

(3) (Total 9 marks)

Q3.

This question is about chemical cells and batteries.

(a) Three different types of battery can be used to power a TV remote control.

The table below gives information about these batteries.

	Zinc-carbon battery	Alkaline battery	Nickel-metal hydride battery
Cost of battery in £ (pounds)	0.17	0.50	1.50
Rechargeable?	No	No	Yes
Time before needing to replace or recharge in months	5	12	8

Give **one** advantage of each type of battery.

Zinc-carbon _____

Alkaline _____

Nickel-metal hydride _____

(b) **Figure 1** shows a symbol printed on batteries.

Figure 1

This symbol shows that batteries should not be put in household waste.

Suggest why batteries should **not** be put in household waste.

Figure 2 shows a chemical cell.

(1)

(1)

(e) Water is produced in a hydrogen fuel cell.

Complete the word equation to show the reaction that produces water in a hydrogen fuel cell.

 $_$ + $_$ \rightarrow water

Q4. A student investigated the energy change occurring in the endothermic reaction between potassium hydrogencarbonate and hydrochloric acid.

Figure 1 shows the apparatus used.

This is the method used.

- 1. Measure 50 cm³ hydrochloric acid into a glass beaker.
- 2. Measure 1.0 g of potassium hydrogencarbonate.
- 3. Add the potassium hydrogencarbonate to the hydrochloric acid.
- 4. Stir until all the potassium hydrogencarbonate has reacted.
- 5. Record the lowest temperature reached.
- 6. Repeat steps 1–5 two more times.
- 7. Repeat steps 1–6 with different masses of potassium hydrogencarbonate.
- (a) Which is the most suitable apparatus to use to measure 50 cm³ of hydrochloric acid?

Tick (🗸) one box.

Balance	
Conical flask	
Gas syringe	
Measuring cylinder	0 0

(1)

(2)

(b) The student used a glass beaker for the reaction.
 Suggest one change to the apparatus that would improve the accuracy of the results.
 Give a reason for your answer.

(c) Which two variables should the student keep the same to make this a fair test?

Tick **two** boxes.

Mass of potassium hydrogencarbonate	
Same balance	
Same thermometer	
Starting temperature of hydrochloric acid	
Volume of hydrochloric acid	

(d) **Figure 2** shows part of the thermometer used to measure the temperature.

What is the temperature reading on the thermometer?

Temperature = _____ °C

The table shows a set of results.

	Test 1	Test 2	Test 3
Lowest temperature in °C	16.1	15.8	15.9

(e) What is the range of the lowest temperature?

From _____ °C to _____ °C

(f) Calculate the mean lowest temperature.

Use the table above.

Mean lowest temperature = _____

°C

(2)

(1)

(1)

The graph shows the student's results.

- (h) Draw two straight lines of best fit on the graph above.
- (i) Describe how the lowest temperature changes as the mass of potassium hydrogencarbonate added increases.

(2)

(3)

Q5. Chemical reactions can produce electricity.

(a) The diagram below shows a simple cell.

Which of these combinations would not give a zero reading on the voltmeter in the diagram above?

Tick **one** box.

Electrode A	Electrode B	Electrolyte	
Copper	Copper	Sodium chloride solution	
Zinc	Zinc	Water	
Copper	Zinc	Sodium chloride solution	
Copper	Zinc	Water	

Alkaline batteries are non-rechargeable.

(b) Why do alkaline batteries eventually stop working?

(1)

(c) Why can alkaline batteries **not** be recharged?

(1)

(2)

Hydrogen fuel cells and rechargeable lithium-ion batteries can be used to power electric cars.

(d) Complete the balanced equation for the overall reaction in a hydrogen fuel cell.

 $___ H_2 + ___ H_2O$

(e) The table below shows data about different ways to power electric cars.

	Hydrogen fuel cell	Rechargeable lithium-ion battery
Time taken to refuel or recharge in minutes	5	30
Distance travelled before refuelling or recharging in miles	Up to 415	Up to 240
Distance travelled per unit of energy in km	22	66
Cost of refuelling or recharging in £	50	3
Minimum cost of car in £	60 000	18 000

Evaluate the use of hydrogen fuel cells compared with rechargeable lithium-ion batteries to power electric cars.

Use the table above and your own knowledge.

Mark schemes <u>C1 Atomic Structure</u> Q1. (a) nucleus

Q1. (a)	nucleus		
	neutron	1	
	neutron	1	
	electron	1	
	proton	1	
	must be in this order	1	
(1.)	$(A_r) \frac{(63 \times 70) + (65 \times 30)}{100}$		
(b)	100	1	
	= 63.6	1	
(c)	an answer of 63.6 scores 2 marks copper / Cu		
	allow ecf from answer to question (b)	1	
	1.2×10^{-10}		
(d)	10000 or		
	$1.2 \times 10^{-10} \times 1 \times 10^{-4}$	4	
	= 1.2 × 10 ⁻¹⁴ (m)	1	
	an answer of 1.2 × 10 ⁻¹⁴ (m) scores 2 marks	1	
	a correct answer not in standard form scores 1 mark	I	[10]
Q2. (a)	A nucleus		
(-)	B electron	1	
(b)	electron	1	
(c)	3 / three	1	
(d)	(atomic number) 5	1	
(u)	(mass number) 11	1	
(\mathbf{o})	isotopo	1	
(6)	79pz 81pz	1	
(f)	there are the same number of 35 ^{DI} atoms and 35 ^{DI} atoms	1	
Q3.			[8]
(a)	electron	1	
(b)	plum pudding	1	

	(c)	alaba		
	(0)		1	
	(d)	Bonr	1	
	(e)	protons	1	
		neutrons	1	
		protons (and) electrons	•	
		either order	1	
Q4	. (a)	2,8,8,1		[7]
	(b)	they have the same number of outer shell electrons	1	
	(c)	any two from: • bubbles (very) quickly • melts (into a ball) • floats • moves (very) quickly <i>allow flame</i>		
	(d)	(reactivity) increases (down the group)	2	
	(e)	 any two from: increasing speed of movement increasing rate of bubble production doesn't melt → melts no flame → flame or flame → explosion 	1	
	(f)	hydrogen	4	
Q5	•		1	[9]
	(a)	7	1	
	(b)	F ₂	1	
	(c)	the reactivity decreases (going down Group 7) allow the reactivity decreases from chlorine to iodine	1	
		(because) chlorine displaces bromine and iodine allow (because) chlorine has two reactions allow (because) neither bromine nor iodine can displace chlorine		
		(and) bromine displaces iodine or iodine does not react allow (and) bromine has one reaction or iodine has no reactions allow (and) iodine cannot displace bromine	1	
		an answer of 75 (%) scores 2 marks	1	

[5]

<u>C2 Bonding, structure and the properties of matter</u> Q1.

more than one line drawn from a variable negates the mark

		4
(b) Carbon	1
(c)	It has delocalised electrons	1
(d) the atoms / particles / ions are different sizes do not accept molecules	1
	so there are no rows / layers to slide accept the layers are disrupted	1
(e	$\frac{2}{27} \times 100$	1
	7.4%	1
(f)	allow 7.4% with no working shown for 2 marks Mixture	1
Q2.		1 [11]
(a) H ₂ O ₂	4
(b) covalent	1
(c) transition metals	1
X - 2		1

(d)

Q3.

	scores 2 marks allow dots, crosses, circles or e ⁽⁻⁾ for electrons 1 bonding pair of electrons in the right hand overlap do not accept any change to the number of electrons in the left hand overlap	
	4 non-bonding electrons on oxygen do not accept non-bonding electrons on hydrogen ignore inner shell electrons drawn on oxygen	1
• (2)	R	
(a)		1
(b)	D	1
(c)	E	
(d)	blue food colour from a mixture of food colours	1
	copper from an alloy of copper and zinc	
	copper sulfate from copper sulfate solution	
	ethanol from a mixture of ethanol and water	
	additional line from a box negates the mark for that box	
(e)	(filter) funnel containing filter paper	2 1
	quitable vessel for collecting filtrate	

[5]

1

1

suitable vessel for collecting filtrate 1 sand **and** water labelled in correct place 1 100 °C (f) 1 [9] Q4. (a) electrons transferred from potassium to sulfur 1 two potassium atoms each lose one electron 1 forming K⁺ / 1+ ions 1 sulfur atoms gain 2 electrons

forming S²⁻ / 2- ions

- (b) there are no gaps / sticks between the potassium ions and sulfide ions
- (c) (two) shared pairs between H and S

Does not conduct electricity when molten

rest correct - no additional hydrogen electrons and two non-bonding pairs on sulfur second mark dependent on first

(d) 342

 allow 1 mark for evidence of (2 × 27) + 3[32 + (16 × 4)]

 (e)
 Property

 Explanation of property

 Electrons are free to move

 Low melting point

 Ions are free to move

 Weak intermolecular forces of attraction

Weak intermolecular forces of attraction Bonds are weak Bonds are strong

more than one line drawn from a variable negates the mark

more than one line drawn from a variable negates the mark

2 [14]

1

1

1

2

2

C3 Quantitive Chemistry

01				
(a)	$(3 \times M_r H_2 O = 3 \times (2 + 16) =) 54$ (A _r R = 150 - 54 =) 96 <i>ignore units</i>	1		
	alternative approach: $(M_r \ RO_3 = 150 - 6 =) \ 144 \ (1)$ $(A_r \ R = 144 - (3 \times 16) =) \ 96 \ (1)$ ignore units	I		
(b)	(R =) molybdenum / Mo allow ecf from question (a)	1		
(c)	(total $M_{\rm r}$ of reactants) = 163	1		
	(% atom economy =) $\frac{119}{163}$ (×100) allow correct use of an incorrectly calculated value of total M_r	1		
	- 72 (9/)	1		
	allow 73.00613 (%) correctly rounded to at least 2 significant figures	1		
(d)	Level 2: Some logically linked reasons are given. There may also be a simple judgement.	1		
	Level 1: Relevant points are made. They are not logically linked.	3-4		
	No relevant content			
	 Indicative content carbon and iron are the cheapest reactants hydrogen is the most expensive reactant separating solid products is expensive separating solid products is time consuming in method 1, tungsten needs to be separated from tungsten carbide in method 1, some tungsten is lost as tungsten carbide in method 1, the carbon dioxide produced will escape in method 2, the water vapour produced will escape in method 3, tungsten needs to be separated from iron oxide 	0		
Q2. (a)	$\frac{0.06}{25(.0)} \times 100$	1		
		1		
(b)	(pipette) measures volume more accurately or			
	(pipette has a) smaller (percentage) uncertainty allow (pipette is) more accurate	1		

[10]

Q3. (a)	(total <i>M</i> r = 170 <i>allo</i>	+ 150) = 320 w (235 + 85) = 320	
	(% atom econol) $\frac{235}{320} \times 100$	my =) 235	L
	allo	w correct use of incorrectly calculated total M _r	1
	= 73.4375 (%)		1
	= 73.4 (%) allo figu use	w an answer correctly calculated to 3 significant ares from an incorrect percentage calculation which as the values in the question	1
(b)			L
	an a an a leas	answer of 77 (%) scores 2 marks answer of 78.63247863 (%) correctly rounded to at st 2 significant figures scores 1 mark	
	$\frac{184}{(232+6)}$ ×100		1
	= 77 (%)		L
	allo sigr	w 77.31092437 (%) correctly rounded to at least 2 nificant figures 1	1
(c)	an	answer of 15 (kg) scores 2 marks	
	$\frac{38}{100} \times 40$		
	= 15 (kg) <i>allo</i>	w 15.2 (kg)	L
(d)		1	ł
	an a (2 x 27) + (3 x 1	answer of 102 scores 2 marks	
	- 102	1	L
	igno	ore units	
(e)			L
	$\frac{28.4}{31.8}$ ×100	answer of 89.3 (%) scores 3 marks	
	= 89.3081761 (1 %)	Į
	allo sigr	w 89.3081761(%) correctly rounded to at least 2 nificant figures	
	= 89.3 (%)	1	L
	allo figu may	w an answer correctly rounded to 3 significant ires from an incorrect calculation which uses the sses in the question	
		1	L

[3]

			[13]
Q5. (a)	sodium oxide allow Na₂O		
(b)	oxidation	1	
(c)	13	1	
(f)	$(volume =) \frac{250}{1000} \text{ or } \frac{1}{4}$	1	
(1)	or 0.25 (dm ³)		
	or	1	
	$(mass per cm^3 =) \frac{40}{1000} (g)$		
	or 0.04 (g)		
	$\left(\frac{250}{1000} \times 40 =\right) 10 \text{ (g)}$		
	an answer of $10 (\alpha)$ asserts 2 marks	1	
_	an answer or TO (g) scores Z marks		[5]
<u>C4 Ch</u>	emical changes		
Q1. (a)	3.6 (cm ³)	1	
(b)	hydrogen line only	1	
(c)	both lines	1	
(d)	graphite has delocalised electrons	1	
(e)	cathodeanodezinc (1)chlorine (1)do not accept chlorideallow 1 mark if chlorine and zinc the wrong way around	1.1	
	hydrogen (1) bromine (1) do not accept bromide allow 1 mark if bromine and hydrogen the wrong way around	1+1	
		1+1	[8]
Q2. (a)	 any one from: metal (metal) hydroxide allow ammonium hydroxide (metal) carbonate allow ammonium carbonate alkali allow soluble base allow ammonia allow named example allow correct formula ignore base 	1	

(b) Ca(NO₃)₂

allow $Ca^{2+}(NO_3^{-})_2$

		1	
(c)	Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	1	
	Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.	5-0	
	Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	3–4	
	No relevant content	1–2	
	 Indicative content use magnesium oxide and sulfuric acid add sulfuric acid to a beaker warm sulfuric acid add magnesium oxide add magnesium oxide stir continue adding until magnesium oxide is in excess filter using a filter paper and funnel to remove excess magnesium oxide heat solution in an evaporating basin to crystallisation point leave to crystallise pat dry with filter paper credit may be given for diagrams 	0	[8]
Q3. (a)	H+	1	[o]
(b)	neutralisation	1	
(c)	$H_2SO_4 + 2 \text{ KOH} \rightarrow K_2SO_4 + 2 H_2O$ allow multiples	1	
(d)	14	1	
(e)	pipette	1	
(f)	add potassium hydroxide (solution) to the (conical) flask	1	
	add (a few drops of) indicator	-	
	add the (sulfuric) acid (from the burette)	-	
	until the colour (of the indicator) changes	1	
	read the volume from the burette	1	
Q4. (a)	48 (cm ³)	1	[10]
(b)	(change in y =) 70 (cm ³)	1	
	(change in x =) 0.4 (g)	1	

	allow 1 mark if zinc ar	d chlorine the wrong w	vay round	2	
	potassium iodi <u>d</u> e	(potassium)	(iodine)		
	(zinc chloride)	zinc (1)	chlori <u>n</u> e (1)		
	Molten compound electrolysed	Product at the negative electrode	Product at the positive electrode		
		1			
(d)				1	
(c)	toxic / poisonous (fumes) allow harmful / corrosive (fumes) ignore dangerous / deadly / lethal				
	if no other copper an	mark awarded allow 1 d hydrogen	mark for	1	
(D)	(copper suitate solution allow copp allow meta	ion) pink / orange / red / per plating al for solid	cence / fizzing	1	
QJ. (a)				1	
05 (a)	by filtration			1	[9]
	using an electric heate	er			
(f)	using a (boiling) water	bath			
(e)	to evaporate water			1	
(d)	carbon dioxide			1	
(c)	hydrochloric acid			1	
	= 175 (cm³/g)			1	
	change in	y and / or change in x		1	
	(gradient =) 0.4 allow corre	ect use of incorrectly d	erived values for		

C5 Energy changes

Q1. (a) water

allow H₂O do **not** accept energy

(b) W = energy
X = activation energy
Y = overall energy change
Z = progress of reaction

[7]

1

1

1

1

1

(c)	to produce a potential difference	1	
(d)	magnesium and copper	1	
	(the metals) have the largest difference in reactivity	1	[8]
Q2. (a	$\frac{54+50+55}{3}$	1	
	= 53 (°C) if no other mark awarded allow 1 mark for $\frac{54 + 50 + 37 + 55}{4} = 49 (°C)$	1	
(b)	(most reactive) magnesium zinc (least reactive) cobalt <i>allow ecf from question (a)</i>	1	
(c)	(18 ±) 2 (°C)	1	
(d)	control	1	
(e)	use the same mass of metal / powder	1	
(f)	(A) progress of reaction	1	
	(B) activation energy	1	
	(C) products	1	[9]
Q3. (a)	(zinc-carbon) cheap(est)	1	
	(alkaline) long(est) lasting	1	
	(nickel-metal hydride) rechargeable allow do not have to be thrown away	1	

(b)	any one from:	
	allow (batteries) can ignite / explode	
	(metal / alkaline waste) could cause pollution in landfill sites	
	recycling would save resources	
	Ignore dangerous	1
(C)	copper and Iron	1
(-1)		
(a)	 temperature (of electrolyte / solution) 	
	concentration (of electrolyte / solution)	
	ignore type of electrode / electrolyte	
	allow size / mass / length of electrode	
	allow surface area of electrode	
	allow distance between electrodes	
		1
(e)	bydrogen	
(0)	allow H ₂	
		1
	oxygen	
	allow O ₂	
		1
		[0]
01	manuring ovlinder	
G4. (a)		1
(h)		
(0)	allow insulate the beaker and / or use a lid	
		1
	better insulator	
	or	
	reduces energy transfer from the surroundings	
		1
(c)	starting temperature of hydrochloric acid	1
		1
	volume of hydrochloric acid	1
		I
(d)	21.4 (°C)	1
		*
(e)	15.8 (°C) to 16.1 (°C)	

3

(f)

=15.9 (°C)

an answer of 15.9(333) ((°C) scores 2 marks
--------------------------	----------------------------

1

1

1

1

1

1

1

1

allow 15.9(333..) (°C)

(g) temperature decreases

(h) straight line from (1.0, 19.8) to (5.0, 14.6) ignore continuation of line in either direction

horizontal straight line from (5.0, 14.6 to 8.0, 14.6) ignore continuation of line in either direction

the answer below scores 2 marks

(i) (lowest) temperature decreases

to 14.6 °C or until 5 g added

then no change to temperature (after 5 g solid added) $\ensuremath{\textit{or}}$

	then temperature remains at 14.6 $^{\circ}$ C (after 5 g solid added)	1	[15]
Q5. (a)	copper, zinc, sodium chloride solution	1	
(b)	a reactant is used up allow the reaction stops allow electrolyte / electrode / ions / metal / metal hydroxide / alkali for reactant	1	
(c)	the reaction is not reversible	1	
(d)	$2H_2 + O_2 \rightarrow 2H_2O$ allow fractions / multiples allow 1 mark for O_2	2	
(e)	Level 3: A judgement, strongly linked and logically supported by a sufficient range of correct reasons, is given.	5-6	
	Level 2: Some logically linked reasons are given. There may also be a simple judgement.	3-4	
	Level 1: Relevant points are made. This is not logically linked.	1–2	
	No relevant content	0	

Indicative content

reasons why fuel cells could be judged as better

from the table	from other knowledge	
 time for refuelling a fuel cell is faster than recharging or a fuel cell does not need to be recharged a fuel cell has a greater range 	 hydrogen can be renewable if made by electrolysis using renewable energy lithium-ion batteries can catch fire produces only water or no pollutants produced lithium-ion batteries may release toxic chemicals on disposal lithium-ion batteries 	

	(eventually cannot be recharged so) have a finite life
--	--

reasons why the lithium-ion battery could be judged as better

from the table	from other knowledge
 lithium-ion uses energy more efficiently cost of lithium-ion car much less cost of recharging much less than refuelling with hydrogen 	 hydrogen is often made from fossil fuels so is not renewable charging points are more widely available than hydrogen filling stations hydrogen takes up a lot of space or is difficult to store hydrogen can be highly flammable / explosive no emissions produced (catalyst in the hydrogen fuel-cell eventually becomes poisoned so) have a finite life

[11]